Hello Bio, Inc. 304 Wall St., Princeton, NJ 08540 USA

T. 609-683-7500 F. 609-228-4994

customercare-usa@m2stage.hellobio.com

DATASHEET

Janelia Fluor® 525, free acid

Product overview

Name Janelia Fluor® 525, free acid

Cat No HB7173

Biological description Cell-permeable, yellow fluorescent dye with a free acid reactive group. Used for the synthesis of

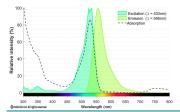
Janelia Fluor® HaloTag® and SNAP-tag® ligands. Suitable for confocal microscopy and super resolution microscopy (SRM) including techniques such as dSTORM (both live and fixed cells). Can

also be multiplexed with Janelia Fluor $\ensuremath{\text{@}}$ 635 SE for two color imaging.

Spectrally similar dyes: Alexa Fluor® 532, Alexa Fluor® 514, Atto 532, CF514, CF532

Dyes & stains

>95%


Yellow dye supplied as a free acid. Suitable for super resolution microscopy (e.g. dSTORM), confocal

microscopy and live cell imaging.

Images

Purity Description

Biological action

Biological Data

Application notes

#Protocol 1: Measurement of excitation and emission spectra of Janelia Fluor ® 525, free acid

- Spectra were generated on a Tecan Infinite M200 PRO using the following parameters:
 - $\circ\,$ Excitation: Recording at 618nm while exciting between 280nm and 590nm
 - $\circ\,$ Emission: Exciting at 484nm while recording between 510nm and 800nm
 - Absorbance: Measured between 300 and 800nm

Solubility & Handling

Storage instructions Solubility overview Important -20°C

Soluble in DMSO

This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not

for human or veterinary use

Chemical Data

Chemical name

3,6-Di-1-(3,3-difluoroazetidinyl)-9-[2,5-dicarboxy-phenyl]xanthylium, inner salt

Molecular Weight Chemical structure 526.44

Molecular Formula

 $C_{27}H_{19}F_4N_2O_5$

SMILES

Source

NEMQHPGUMYWUDT-UHFFFAOYSA-N InChiKey

Licensing details Sold under license from the Howard Hughes Medical Institute, Janelia Research Campus

References

A general method to fine-tune fluorophores for live-cell and in vivo imaging.

Grimm JB et al (2017) Nature methods 14 **PubMedID**