

DATASHEET

JHU37160 dihydrochloride (DREADD ligand) (water soluble)

Product overview

Name	JHU37160 dihydrochloride (DREADD ligand) (water soluble)
Cat No	HB6261
Alternative names	J60 dihydrochloride
Purity	>98%
Description	Novel DREADD agonist with high affinity and potency for hM3Dq and hM4Di. Active in vivo. Water soluble.

Images

Biological Data

Biological description

Overview

JHU37160 is reported to be a novel DREADD agonist with high in vivo DREADD potency for CNS applications.

It has high affinity in vitro for hM3Dq and hM4Di (K_i values are 1.9 nM (hM3Dq) and 3.6 nM (hM4Di)).

It selectively displaces [3 H]clozapine from DREADDs and not from other clozapine-binding sites at concentrations up to 10 nM when tested for in situ [3 H]clozapine displacement in brain tissue from WT and D₁-DREADD mice.

JHU37160 activates hM3Dq and hM4Di with high potency and efficacy in fluorescent and BRET-based assays in HEK-293 cells (EC₅₀ values are 18.5 and 0.2 nM at hM3Dq and hM4Di respectively).

Occupancy

JHU37160 exhibits high in vivo DREADD occupancy and was not reported to be a P-gp substrate.

In vivo application

JHU37160 is reported to be a potent in vivo DREADD agonist, which selectively inhibits locomotor activity in D₁-hM3Dq and D₁-hM4Di mice without any significant locomotor effects observed in wild type (WT) mice (at doses ranging 0.01 - 1 mg/kg).

It also produces robust and selective increases in hM3Dq-stimulated locomotion in rats expressing hM3Dq in tyrosine hydroxylase expressing neurons (at doses ranging 0.01 – 0.3 mg/kg).

In vivo electrophysiology experiments in mice, JHU37160 produces rapid and potent hM4Di-driven

inhibition of light-evoked neuronal activation (at a dose of 0.1 mg/kg).

While its selectivity is not ideal (i.e. comparable to clozapine), its high in vivo potency allows for dose adjustments with minimal off-target effects. The compound exhibits promising characteristics for DREADD use in monkeys.

Shows dose-dependent anxiogenic effect in male Wistar and Long-Evans rats, regardless of DREADD expression, with no impact on locomotor behaviour suggesting that high doses (e.g. 1mg/kg) should be avoided in chemogenetic experiments designed to evaluate circuit manipulation on anxiety-like behavior in rats.

[Freebase](#) also available.

Sold under license from the NIH, US patent pending 62/627,527

Stability Studies

For more info on the stability of water-soluble DREADD ligands in solution, please see the following guides:

- [Stability of Water-Soluble DREADD ligands in Solution: A Technical Review](#)

Solubility & Handling

Storage instructions

-20°C

Solubility overview

Soluble in water (100mM). Always store solutions at -20°C.

Handling

Storage of solid

- Store at -20°C.
- Please note that the compound is a hydroscopic solid and contact with air may cause material to become sticky. Product performance should not be affected but we recommend storing the material in a sealed jar.

Storage of solutions

- Make up solutions and use immediately.
- If storage of solutions is required, you should aliquot out the solution into tightly sealed vials and store at -20°C and store these for up to one month.
- Allow the product to equilibrate to RT for at least one hour before opening and using.

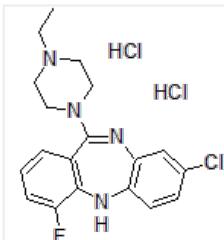
Storage of solutions at room temperature

- We have found that this compound precipitates in aqueous solution at RT (~25°C)
- We therefore recommend that you make up solutions and use immediately.
- Always check that your product is completely dissolved before use.

Important

This product is for RESEARCH USE ONLY and is not intended for therapeutic or diagnostic use. Not for human or veterinary use

Chemical Data


Chemical name

8-chloro-11-(4-ethylpiperazin-1-yl)-4-fluoro-5H-dibenzo[b,e][1,4]diazepine dihydrochloride

Molecular Weight

431.76

Chemical structure

Molecular Formula

C₁₉H₂₀ClFN₄ · 2HCl

Chemical name	8-chloro-11-(4-ethylpiperazin-1-yl)-4-fluoro-5H-dibenzo[b,e][1,4]diazepine dihydrochloride
CAS Number	2369979-68-8 (free base)
PubChem identifier	0
SMILES	Cl.C1CCN1CCN(CC1)C3=Nc4cc(Cl)ccc4Nc2c3cccc2F
Source	Synthetic
InChi	InChI=1S/C19H20ClFN4.2ClH/c1-2-24-8-10-25(11-9-24)19-14-4-3-5-15(21)18(14)22-16-7-6-13(20)12-17(16)23-19;./h3-7,12,22H,2,8-11H2,1H3;2*1H
InChiKey	DHICOGMHOCAKOF-UHFFFAOYSA-N
Appearance	Yellow solid
Licensing details	Sold under license from the NIH, US patent pending 62/627,527

References

Chemogenetic ligands for translational neurotheranostics

Bonaventura et al (2018) bioRxiv doi: <https://doi.org/10.1101/487>

High-potency ligands for DREADD imaging and activation in rodents and monkeys.

Bonaventura et al (2019) Nat Commun. 10(1)

PubMedID [31604917](#)

0067 Humanized Chemogenetic Approach to Treat Sleep Apnea

Curado et al (2019) Sleep (42)

OP-01-02 Graft-host synaptic connectivity can be chemogenetically inhibited with clinically relevant activators to eliminate graft-induced dyskinesias (GID) without loosing anti-parkinsonian benefits of dopaminergic grafts

Subramanian et al (2019) World Congress On Parkinson's Disease And Related Disorders 2019 Poster Abstract

DREADDs: The Power of the Lock, the Weakness of the Key. Favoring the Pursuit of Specific Conditions Rather than Specific Ligands.

Goutaudier et al (2019) eNeuro 6

PubMedID [31562177](#)

High dose administration of DREADD agonist JHU37160 produces increases in anxiety-like behavior in male rats.

Van Savage J et al (2023) Behavioural brain research 452

PubMedID [37352979](#)
